Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Rep ; 38: 101688, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38560051

ABSTRACT

Nalmefene, an antagonist of mu- and delta-opioid receptors and a partial agonist of kappa-opioid receptors, has shown promise in reducing alcohol consumption among patients with alcohol dependence. Opioid receptors play pivotal roles in various physiological processes, including those related to peripheral inflammatory diseases such as colitis and arthritis, as well as functions in the immune system and phagocytosis. Atherosclerosis, a chronic inflammatory disease, progresses through the phagocytosis and uptake of oxidized low-density lipoprotein (oxLDL) by macrophages in atherosclerotic plaques. Despite this knowledge, it remains unclear whether nalmefene influences the formation of atherosclerotic plaques and increases the risk of serious cardiovascular events. This study aims to elucidate the impact of nalmefene on atherosclerosis in apolipoprotein E knockout (ApoE KO) mice and peritoneal macrophages in vitro. In this experiment, 8-week-old male ApoE KO mice were fed a high-fat diet intraperitoneally administered either vehicle (saline) or nalmefene (1 mg and 3 mg kg-1 day-1) for 21 days. Oil red O-staining and immunohistochemistry with an anti-MOMA2 (monocyte/macrophage) antibody showed that a dose-dependent increase in atherosclerotic plaque formation and augmentation of macrophage-rich plaque formation in ApoE-KO mice. Further investigations focused on the effects of nalmefene on the expression of scavenger receptor CD36 in RAW264.7 cells, conducted through western blotting analysis. Nalmefene demonstrated a significant increase in CD36 protein expression in RAW264.7 cells. To explore the impact on oxidized LDL uptake in peritoneal macrophages, cells were treated with nalmefene (300 µg/mL) for 24 h, followed by the addition of DiI-labeled oxLDL (DiI-oxLDL) for 4 h. Nalmefene significantly enhanced DiI-oxLDL uptake in macrophages. Additionally, treatment with nalmefene (300 µg/mL) for 24 h decreased the mRNA expression of mu-, delta-, and kappa-opioid receptors in RAW264.7 cells. In conclusion, nalmefene may augment oxLDL uptake by macrophages through increased CD36 expression and decreased opioid receptor, thereby contributing to atherosclerotic plaque formation and vulnerability. Consequently, the use of nalmefene may be associated with an elevated risk of cardiovascular events.

2.
Biochem Biophys Res Commun ; 629: 1-5, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36087537

ABSTRACT

Fluoroquinolones are one of the most frequently prescribed antibiotics. However, their use increases the risk of Aortic aneurysm and dissection (AAD). The mechanism underlying this effect remains unclear. AAD are caused by weakening of the aortic wall and loss of vascular smooth muscle cells. Osteopontin is involved in the occurrence and development of AAD. The aim of the present study was to examine the role of moxifloxacin, a fluoroquinolone, in the occurrence of AAD using a moderate-severity AAD mouse model. Four-week-old male C57BL/6J mice were fed a high-fat diet. At 8 weeks of age, the mice were infused with saline or angiotensin II (1000 ng kg-1 min-1) via osmotic minipumps for 4 weeks, and then orally administered water (vehicle) or moxifloxacin (30 and 100 mg kg-1 day-1) for another 3 weeks. Moxifloxacin (30 and 100 mg kg-1 day-1) induced AAD and elastin degradation in aortic tissues, as revealed by hematoxylin and eosin staining and elastica-van Gieson staining. Additionally, immunohistochemical staining and Western blot analyses showed that moxifloxacin 100 mg kg-1 day-1 decreased the protein expression of smooth muscle protein 22α, one of the markers of the contractile phenotype of vascular smooth muscle cells, in aortic tissues compared to vehicle and moxifloxacin 30 mg kg-1 day-1. Furthermore, moxifloxacin (100 mg kg-1 day-1) increased the protein expression of osteopontin and matrix metalloproteinases-2 in the aortic tissues when compared to control. Moxifloxacin may induce the onset of AAD and weakening of the aortic media by increasing the expression of osteopontin and matrix metalloproteinase-2 and decreasing that of smooth muscle protein 22α in aortic tissue.


Subject(s)
Aortic Aneurysm , Aortic Dissection , Aortic Dissection/chemically induced , Aortic Dissection/genetics , Angiotensin II/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Aortic Aneurysm/chemically induced , Disease Models, Animal , Elastin/metabolism , Eosine Yellowish-(YS)/adverse effects , Eosine Yellowish-(YS)/metabolism , Hematoxylin/metabolism , Hematoxylin/pharmacology , Male , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Inbred C57BL , Moxifloxacin/adverse effects , Moxifloxacin/metabolism , Muscle Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Osteopontin/metabolism , Rubber/adverse effects , Rubber/metabolism , Water/metabolism
3.
J Pharmacol Sci ; 143(2): 106-111, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32173266

ABSTRACT

Varenicline is a widely used and effective drug for smoking cessation. We have previously reported experimental evidence suggesting that varenicline increases the risk of cardiovascular events. Varenicline progresses atherosclerotic plaque formation in apolipoprotein E knockout (ApoE KO) mice. This adverse effect is likely due to enhanced net uptake of oxidized low-density lipoprotein (oxLDL) in macrophages as a result of increased scavenger receptors and decreased cholesterol efflux transporters. However, a regimen has not yet been presented for avoidance or amelioration of the risk for varenicline-induced cardiovascular events. The aim of this study was to examine the effect of hesperidin, a citrus flavonoid, on varenicline-aggravated atherosclerotic plaque formation in apolipoprotein E knockout (ApoE KO) mice. Hesperidin inhibited the aggravating effect of varenicline in the whole aorta, aortic arch, and aortic root of ApoE KO mice. In addition, hesperidin protected against varenicline-enhanced oxLDL net uptake by blocking the increased expression of CD36 and LOX-1 scavenger receptors and decreased expression of ABCA1 and ABCG1 cholesterol efflux transporters in RAW 264.7 cells. Our findings suggest that hesperidin can avoid or ameliorate the risk for cardiovascular events induced by varenicline treatment.


Subject(s)
Apolipoproteins E , Down-Regulation/drug effects , Hesperidin/pharmacology , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Plaque, Atherosclerotic/metabolism , Varenicline/adverse effects , Varenicline/antagonists & inhibitors , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Animals , CD36 Antigens/metabolism , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/prevention & control , Mice , Mice, Knockout , RAW 264.7 Cells , Scavenger Receptors, Class E/metabolism
4.
J Pharmacol Sci ; 142(1): 9-15, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31771811

ABSTRACT

Varenicline is a widely used and effective drug for smoking cessation. We previously reported that varenicline aggravates atherosclerosis in apolipoprotein E knockout (ApoE KO) mice. However, it remains unknown whether varenicline affects cardiovascular events in patients with nicotine addiction. Here, we examined the effect of varenicline on atherosclerotic plaque formation in nicotine-pretreated ApoE KO mice and oxidized low-density lipoprotein (oxLDL) uptake in nicotine-treated peritoneal macrophages. Varenicline caused significant progression of plaque formation in the whole aorta and aortic root and further accelerated the increased formation of a macrophage-rich plaque area in the aortic root in nicotine-pretreated ApoE KO mice. Varenicline (10 µM) enhanced oxLDL uptake in peritoneal macrophages. Furthermore, this treatment significantly further lowered the decreased protein levels of ATP-binding cassette (ABC) transporter without affecting the expression of scavenger receptors LOX-1 and CD36 in RAW264.7 cells treated with 100 nM nicotine. Varenicline enhanced nicotine-induced oxLDL uptake in macrophages through decreased expression of cholesterol efflux transporters ABCA1 and ABCG1 and thereby progressed atherosclerotic plaque formation. Taken together, we tentatively conclude that nicotine exposure before and/or during varenicline treatment can aggravate varenicline-increased atherosclerotic plaque formation and progression. Therefore, this enhanced risk requires special consideration when prescribing varenicline to smoker patients.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Macrophages/metabolism , Nicotine/pharmacology , Plaque, Atherosclerotic/etiology , Varenicline/toxicity , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , Animals , Down-Regulation , Gene Expression Regulation/drug effects , Lipoproteins, LDL/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Nicotine/agonists , RAW 264.7 Cells , Smoking Cessation Agents/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...